Non-dominated Sorting Differential Evolution (NSDE): An Extension of Differential Evolution for Multi-objective Optimization
نویسندگان
چکیده
Most of the real world optimization problems are multi-objective in nature. Recently, Evolutionary algorithms are gaining popularity for solving Multi-Objective Optimization Problems (MOOPs) due to their inherent advantages over traditional methods. In this paper, Differential Evolution (an evolutionary algorithm that is significantly faster and robust for optimization problems over continuous domain) is extended for solving MOOPs and we call this extended algorithm as Non-dominated Sorting Differential Evolution (NSDE). The proposed algorithm is applied successfully to two different benchmark test problems. Also, the effect of various key parameters on the performance of NSDE is studied. A high value of crossover constant (≅ 1) and a value of 0.5 for scaling factor are found suitable for both the problems.
منابع مشابه
Optimum Pareto design of vehicle vibration model excited by non-stationary random road using multi-objective differential evolution algorithm with dynamically adaptable mutation factor
In this paper, a new version of multi-objective differential evolution with dynamically adaptable mutation factor is used for Pareto optimization of a 5-degree of freedom vehicle vibration model excited by non-stationary random road profile. In this way, non-dominated sorting algorithm and crowding distance criterion have been combined to differential evolution with fuzzified mutation in order ...
متن کاملPareto Optimal Balancing of Four-bar Mechanisms Using Multi-Objective Differential Evolution Algorithm
Four-bar mechanisms are widely used in the industry especially in rotary engines. These mechanisms are usually applied for attaining a special motion duty like path generation; their high speeds in the industry cause an unbalancing problem. Hence, dynamic balancing is essential for their greater efficiency. In this research study, a multi-objective differential evolution algorithm is used for P...
متن کاملMemetic Elitist Pareto Differential Evolution algorithm based Radial Basis Function Networks for classification problems
This paper presents a new multi-objective evolutionary hybrid algorithm for the design of Radial Basis Function Networks (RBFNs) for classification problems. The algorithm, MEPDEN, Memetic Elitist Pareto evolutionary approach based on the Non-dominated Sorting Differential Evolution (NSDE) multiobjective evolutionary algorithm which has been adapted to design RBFNs, where the NSDE algorithm is ...
متن کاملOptimum sliding mode controller design based on skyhook model for nonlinear vehicle vibration model
In this paper a new type of multi-objective differential evolution employing dynamically tunable mutation factor is used to optimally design non-linear vehicle model. In this way, non-dominated sorting algorithm with crowding distance criterion are combined to fuziified mutation differential evolution to construct multi-objective algorithm to solve the problem. In order to achieve fuzzified mut...
متن کاملOperation Loop-Based Optimization Model for Resource Allocation to Military Countermeasures versus Probabilistic Threat
Weapons development planning is an unstructured and complex multi-criteria decisionmaking problem, especially in antagonistic environments. In this paper, the defender’s decision was modelled as a high complexity non-linear optimization problem with limited resources. An operation loop with realistic link rules was first proposed to model the cooperation relationships among weapons in the defen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005